Skip to content

Tensegrity Robots in Science Fiction!

One of the descriptions used by the NASA Innovative Advanced Concepts (NIAC) program that has supported our research for the last three years is: “Science Fiction Becoming Science Fact!”

In a fun reversal, our “Science Fact” research has been turned into “Science Fiction” — Neal Stephenson has including rolling Tensegrity Robots modeled off our SUPERball design in his newest book Seveneves: A Novel

For those who do not recognize his name right away, Neal is a world famous science fiction author and wrote influential works such as Snow Crash, The Diamond Age, and Cryptonomicon.

As soon as the book was published in May I had friends writing to me excited to see our ideas appearing in a Science Fiction novel by such a famous author!  How Fun!  So, I immediately ordered a copy of the book and read it.  It was a thrilling, edge of the seat, ride, (admittedly our tensegrity robots only play a small role in the storyline, but it is fun that they show up!) and I can strongly encourage anyone to buy a copy and enjoy it!

And,  while we are on the topic of PR and attention for our research, it is also fun to share the following article which was published in The American Scientist in July of 2015.

Stephen Piazza, “In-tense Robots — Motorized sculptures may represent our best chance for exploring the surfaces of other worlds.” The American Scientist.

And Finally, we recently gave a demonstration of our SUPERball tensegrity robot to Dava Newman, the Deputy Administrator of NASA.  That was fun.  She loved it.


You can also see more photos from her visit by our friends from the UC Berkeley BEST lab who participated in giving the Demo.


Posted in Robots, Tensegrity.

Tagged with , , , , , , .

Robot Books for Kids!

Wow, so many things to share!  Five months ago our son was born, and now our research is showing up in kids books everywhere!  I’m really excited about this, and the opportunity to inspire future generations of robotics engineers and researchers!

I’m especially pleased by the newest book published by Scholastic: “Really? Robots” — I contributed a section on our robots, helped edit the overall book, and wrote the forward.  It is a fun and inspirational book with an overview of many different types of robots and how they function.  Besides the joy of inspiring future generations of robot builders, I’m also honored by the credit they have given me:


And before I even had my own copy of the book I got a request for an autograph from my first fan!  I ended up inviting Lilly to visit our lab so that she could see the robots in person.  It was delightful to see how excited she was from the experience, and I hope it inspires her to think more about robots and intelligence.


And this week, KQED published a blog post about our research and our collaboration with UC Berkeley.

It was a great article, and is geared at inspiring elementary school kids.  They are working on an e-book for science teachers to include in classroom education, and so I’m excited to see that coming out soon.

Along with the blog post, they made this really excellent video:

And finally, if all this inspirational content is enough to excite a young engineer into action, another book was recently published on Making Simple Robots! This is a great book with simple instructions and includes a project for making a tensegrity robot!

So, all together, it is really joyful to be finding ways to share the inspiration of our robotics research with students from all age groups — from post-docs to pre-school! Enjoy, and please share these resources with the young engineers and curious learners in your life!

You can find the books listed above on Amazon by following these links:

Posted in Robots, Tensegrity.

Tagged with , , , .

Hardware Validation of Tensegrity Simulator

When developing a new simulator, it is important to constantly verify with real hardware implementations that the resulting simulations are a reasonable reflection of reality, and not just pretty movies. We learned this early on when our first tensegrity robot simulations turned out to be violating basic laws of physics by harnessing “free-energy” generated by the unrealistic cable models built into the Bullet Physics Engine. We then spent significant time developing new and realistic elastic cable models which actually followed the laws of physics and didn’t introduce new energy into the system. In a prior paper we reported on motion capture experiments which validated that our NASA Tensegrity Robotics Toolkit matched the behavior of our six strut ReCTeR robot to within 1.3% error on position through dynamic motions.

The following video shows recent experiments to verify the behavior of our tensegrity “spine” simulations. As you will see in the following video, the basic behaviors of the simulation match well to the hardware prototype that we developed. Given that hardware is expensive to build, we made a 3 segment prototype which shows close agreement to our simulated 3-segment models, and thus we feel confident that the behavior of our larger simulated spines are realistic. The second video below shows some of those larger spine simulations which are controlled via neuroscience inspired “Central Pattern Generator” control networks.

Our full sized tensegrity spine simulations which shows their reactive adaptation to different terrains.

Posted in Bodies, Robots, Tensegrity.

Tagged with , , , , , , , , .

The Economist, Wired, and more Media Attention

Following closely on the heels of the release of the great NASA360 video a few weeks ago, we have had another wave of media attention on our tensegrity robotics research, culminating in coverage by the Economist in their Technology Quarterly section this week.

Along the way, we also were interviewed for an article in Wired Magazine, and had articles about our work appear in IEEE Spectrum and The Smithsonian.

I’m very honored by all the media attention!

Posted in Robots, Tensegrity.

Tagged with , , , .